ORACLE

Fully updated for Java SE 8 (JDK 8)

Java S
A Beginner’'s Guide Java
Sixth Edition

Create, Compile, and Run Java Programs Today

Herbert Schildt

Java™
A Beginner's Guide

Sixth Edition

About the Author

Best-selling author Herbert Schildt has written extensively
about programming for nearly three decades and is a leading
authority on the Java language. His books have sold millions
of copies worldwide and have been translated into all major
foreign languages. He is the author of numerous books on
Java, including Java: The Complete Reference, Herb Schildt’s
Java Programming Cookbook, and Swing: A Beginner’s
Guide. He has also written extensively about C, C++, and C#.
Although interested in all facets of computing, his primary
focus is computer languages, including compilers, interpreters,
and robotic control languages. He also has an active interest in
the standardization of languages. Schildt holds both graduate
and undergraduate degrees from the University of Illinois. He
can be reached at his consulting office at (217) 586-4683. His
website is www.HerbSchildt.com.

About the Technical Reviewer

Dr. Danny Coward has worked on all editions of the Java
platform. He led the definition of Java Servlets into the first
version of the Java EE platform and beyond, web services
into the Java ME platform, and the strategy and planning for
Java SE 7. He founded JavaFX technology and, most recently,
designed the largest addition to the Java EE 7 standard, the
Java WebSocket API. From coding in Java, to designing
APIs with industry experts, to serving for several years as an
executive to the Java Community Process, he has a uniquely
broad perspective into multiple aspects of Java technology.
Additionally, he is the author of JavaWebSocket Programming
and an upcoming book on Java EE. Dr. Coward holds a
bachelor’s, master’s, and doctorate in mathematics from the
University of Oxford.

http://www.HerbSchildt.com

Java™
A Beginner's Guide

Sixth Edition

Herbert Schildt

Mc
T\

Hill

Education

New York Chicago San Francisco
Athens London Madrid Mexico City
Milan New Delhi Singapore Sydney Toronto

Copyright © 2014 by McGraw-Hill Education (Publisher). All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without the prior written permission of publisher, with
the exception that the program listings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

ISBN: 978-0-07-180926-9

MHID: 0-07-180926-0

e-book conversion by Cenveo® Publisher Services
Version 1.0

The material in this e-book also appears in the print version of this title: ISBN: 978-0-07-180925-2,
MHID: 0-07-180925-2

McGraw-Hill Education e-books are available at special quantity discounts to use as premiums and sales
promotions, or for use in corporate training programs. To contact a representative, please visit the Contact Us
page at www.mhprofessional.com.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. All other trademarks are the property
of their respective owners, and McGraw-Hill Education makes no claim of ownership by the mention of products that
contain these marks.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle
Corporation and/or its affiliates.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill Education
does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or
omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any
information contained in this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to
store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create
derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the
work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE
WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained
in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor
its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or
for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed
through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental,
special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of
them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

http://www.mhprofessional.com

OV 00 N O U0 b W N —

O S —
W N = O

Contents at a Glance

Java Fundamentalscooiiiiiiiiiiiiiiiiiiiiiiiiii it ii i 1
Introducing Data Types and Operatorsccoceeeeieeeerecessocesnoss 31
Program Control Statementsccoieiinincecesesesesesesesscsssons 63
Introducing Classes, Objects, and Methodsccovviieiiinnnae.. 103
More Data Types and OPeratorsceceeeeeeetececrscsessssssssssssoss 135
A Closer Look at Methods and Classescocviiiiiiiiiiieiinenenen. 181
Inheritanceccoiuiiiiiiiiiiiiiiiiiiiiiiiiiiii ittt itii e, 225
Packages and Interfacesccoieviiiiiiiiireiireeinseetnsessacecsnoes 267
Exception Handlingccooiiiiiiiiiiiiiiiiiincncesesesesesesesnasanons 299
USING I/O ittt ittt ittt titeteeettaseetnssesacsssncscsnons 329
Multithreaded Programmingccciiiiiiiininrnceseceneneneneneens 371
Enumerations, Autoboxing, Static Import, and Annotations 409
LT 1T (1 439

vi

Java: A Beginner’s Guide

14 Lambda Expressions and Method Referencesc.cocivviiniiecnnens 477
15 Applets, Events, and Miscellaneous Topics cccoiiiiiiiiiiiiiiinnan, 511
16 Introducing SWING ...c.iuiiiiuiiiiniiiiusierusresasresassesassessssesssses 541
17 Introducing JavaFX ...civiiiiiiiiiiiiiiiiirerirerereserececssssscasasasans 579
A Answers to Self Tests ...cciiuiiiiiiiiiiiiiiiiiiiiiiiiiiieieeieeaernsnnnsns 615
B Using Java’s Documentation Commentsccceeevveeuneecnneecances 673

Contents

INTRODUCTION ottt et et ettt Xix
1 Java Fundamentalsciiiiiininincncncasnsnsasssesssssssssscsssons 1
The Origins of Java ...t e 3
How Java Relates to C and CH+ ..ot 4

How Java Relates to CH# ..o i e 4
Java’s Contribution to the Internet o 5
Java APPIetS 5

SO CUTILY ottt ettt e e e e 5
Portability .o 6
Java’s Magic: The Bytecode ...t 6
The Java BUZZWOTAS ... 7
Object-Oriented Programming —iiiniuiin e 8
Encapsulation ... 9
Polymorphism ... 9
INREritance ...o.oeiei 10
Obtaining the Java Development Kit i 10
A First Simple Program ... e 12
Entering the Program 12
Compiling the Program 13

The First Sample Program Line by Linec..c it 13

vii

viii Java: A Beginner's Guide

Handling Syntax EIrors 16
A Second Simple Program ... 16
Another Data TYPe ...t 18
Try This 1-1: Converting Gallons to Liters ..., 20
Two Control Statements iiiuiiii e 21
The if Statement ... 21

The for Loop oo 23
Create Blocks of Code i 24
Semicolons and PoSItONINGo.euit it 26
Indentation PractiCes oouiiiuiiuiiii 26
Try This 1-2: Improving the Gallons-to-Liters Converter —coocoienien... 27
The Java Keywords ... oo 28
Identifiers inJava ... oo 29
The Java Class Libraries —o e 29
Chapter 1 Self Test ..o e 30
2 Introducing Data Types and Operatorsc.ccevveeiiienieeeniennnens 31
Why Data Types Are Important ...t 32
Java’s Primitive TYPeS ..ottt 32
I gerS oo 33
Floating-Point TYPeS ... onit e e e 35

(0] 0T o1 35

The Boolean TYPe ..ottt e e 37
Try This 2-1: How Far Away Is the Lightning? i, 38
eralS oot 39
Hexadecimal, Octal, and Binary Literals —t 40
Character Escape Sequences —ooiiiniiii i 40
String Literals ... 41

A Closer Look at Variablest 42
Initializing a Variable ... 42
Dynamic Initialization e 43

The Scope and Lifetime of Variables —t 43
(5753 ¢) ¢ 46
ArIthmetic OPeratorS ...ttt ettt e ettt e e e 46
Increment and Decrement ... 47
Relational and Logical Operators —oeueuneueunene e aiaeiaeaennns 48
Short-Circuit Logical OPerators —oeueuneueenitei et iaeaenns 50
The Assignment OPEratOro..eutneen et e e 51
Shorthand ASSIGNMENTSttt ettt ettt 51
Type Conversion in ASSIZNMENESo.tu ittt ettt e e e e e 53
Casting Incompatible TYPEs ...ttt e 54

Operator Precedence o.iiuiiiii 56

Confents

Try This 2-2: Display a Truth Table for the Logical Operators — 57
EXPIESSIONS .ottt ittt e et e 58

Type Conversion in EXpressions —ooeiieiiiiii i 58

Spacing and Parentheses i 60
Chapter 2 Self Test ..o e 60
Program Control Statements c.cceiiiiiiiiiiiiiieiieierieecenens 63
Input Characters from the Keyboard i 64
The if Statementt 65
NeSted IS ettt 67
The if-else-if Ladder —......... o 68
The switch Statement ... 69
Nested switch Statements iutin it 72
Try This 3-1: Start Building a Java Help System ..., 73
The fOr Loop oo 75
Some Variations on the for Loop 77
MIiSSING PIECES ..ottt et e 78

The Infinite LOOp ..o 79
Loops with NO Body .. .oooii i 79
Declaring Loop Control Variables Inside the for Loop ooiin... 80
The Enhanced for Loop ..o 81
The While Loop ..o 81
The do-while Loop ..o 83
Try This 3-2: Improve the Java Help System 85
Use break to EXit a LoOp .. .ooniuii 88
Use break as a Form of goto ... i 89
USE CONLIMUE vttt ettt ettt et et e e e e e e e et e e e e e 94
Try This 3-3: Finish the Java Help System i 95
Nested LoOpS .o 99
Chapter 3 Self Test ..ot 100
Introducing Classes, Objects, and Methodsccoviiiiiiiiinnnnn. 103
Class Fundamentals i 104

The General Form of a Classo i 105

Defining a Class ..ottt 106
How Objects Are Created ...ttt 108
Reference Variables and Assignment —ooiiiiniiiiini i 109
Methods ... 110

Adding a Method to the Vehicle Class —ooiiiiiiiiiiii i 110
Returning from a Method 112
Returning a Value 113
USING Parametersouieii ittt 115

Adding a Parameterized Method to Vehicleo il 117

ix

X Java: A Beginner’s Guide

Try This 4-1: Creating a Help Class —ooiiiiiii i 119
CONSLIUCTOTS .+ttt ettt e e ettt ettt et 124
Parameterized CONSIIUCIOTS ..ottt ittt 126
Adding a Constructor to the Vehicle Class cooiiiiiiiiiiiiiiin i 126
The new Operator Revisited ...t e 128
Garbage Collection ...t 128
The finalize() Method 129
Try This 4-2: Demonstrate Garbage Collection
and Finalization 130
The this Keyword 132
Chapter 4 Self Test ..ottt e 134
5 More Data Types and Operatorsccceeveeieeiieiienienieeseencencenns 135
N £ 136
One-Dimensional AITays ...ttt e 137
Try This 5-1: Sorting an AITay outnt ittt e e e 140
Multidimensional AITayso.iuiint it e e 142
Two-Dimensional ATTAYS .. ou ittt et e e 142
[Iregular ATTays ..ot 143
Arrays of Three or More Dimensions —c.ooiiiiiiiiiiiiiiiniiniaen.. 144
Initializing Multidimensional AITays —c.ooniiiiiinen i 144
Alternative Array Declaration Syntax —o.iiiiiiiii i 145
Assigning Array References ... 146
Using the length Member e 147
Try This 5-2: A Queue Class —ieniiitii e 149
The For-Each Style for Loop oouii i 153
Iterating Over Multidimensional ArTays —c.eeneiniineininiiieaeaenns 156
Applying the Enhanced for 158
SIS ettt e e e e e 158
ConStructing SrINES ..ottt ettt e 159
Operating On STrNZS ...ttt ettt et e e e 160
ATTays Of SIINES .ottt e e e e 162
Strings Are Immutable ... 162
Using a String to Control a switch Statement —coiiiiiiiiin.. 164
Using Command-Line Arguments ueuneunerneneineienenaneaenaennns 165
The Bitwise OPEratorsc.uiutet ittt e e e 166
The Bitwise AND, OR, XOR, and NOT Operators —c.coeeiiraenaen.. 167
The Shift Operators —ientui e e 171
Bitwise Shorthand ASSIZNMEeNts oouiieiintie i 173
Try This 5-3: A ShowBits Class ...ttt 174
The 7 OPeratorttt et e e e ettt 176

Chapter 5 Self Test ..ot 178

Contents xi

6 A Closer Look at Methods and Classes ccoceiiviiiiiiiiienieennnenn. 181
Controlling Access to Class Members —o.iiuiiiiiiiiii i 182
Java’s Access MOdIfiers o..iiuiiii 183

Try This 6-1: Improving the Queue Class —ooiiiiiiiiiii e 187
Pass Objects to Methods ... 188
How Arguments Are Passed 190
Returning ObJECS . oo.tii ittt e et 192
Method Overloading —oouiinii e e 194
Overloading CONSIIUCIOTS ...ttt ettt ettt et 199
Try This 6-2: Overloading the Queue Constructor —coveiiiniinennenaen... 201
RECUISION .. 204
Understanding StatiC ...ttt ettt e e 206
Static BIOCKS ..o 209

Try This 6-3: The Quicksort ... e 210
Introducing Nested and Inner Classes —ouiiiiniiiiii i 213
Varargs: Variable-Length Arguments —t 216
Varargs BasiCso. i 217
Overloading Varargs Methods — 220
Varargs and AmMbIigUItYoouiin it e 221
Chapter 6 Self Test ..ot 222
7 Inheritanceciiiiiiiiiiiiiiiiiiiiii i i i it it ieeaee 225
Inheritance BasiCs oo 226
Member Access and Inheritance 229
Constructors and Inheritance i 232
Using super to Call Superclass CONStructors —o.viuiiniiniinennennennenn.. 234
Using super to Access Superclass Members — i 238
Try This 7-1: Extending the Vehicle Class ... 239
Creating a Multilevel Hierarchy i 242
When Are Constructors Executed? 244
Superclass References and Subclass Objects ...t 246
Method OVerriding ..o e 250
Overridden Methods Support Polymorphism ... 253
Why Overridden Methods? 255
Applying Method Overriding to TwoDShapet 255
Using AbStract CLasSESttt ittt 259
Using final ..o 263
final Prevents Overriding ... o 263

final Prevents Inheritance i 263
Using final with Data Members — i 264

The ObjJect Class ...t 265

Chapter 7 Self Test ... e 266

Xii Java: A Beginner's Guide

8 Packages and Interfacescooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniians 267
Packages ... 268
Defining a Package oooiiiii 269
Finding Packages and CLASSPATH i, 270

A Short Package Example 270
Packages and Member ACCESS . .oniniuti i 272
A Package Access Example ... 273
Understanding Protected Members —c..iiuiiiiiiiiin i 274
Importing Packages ... 276
Java’s Class Library Is Contained in Packages, 278
IO aCeS o i 278
Implementing Interfaces 279
Using Interface References ... i 283
Try This 8-1: Creating a Queue Interface o, 285
Variables in Interfaces ...ttt 290
Interfaces Can Be Extended 291
Default Interface Methods ..ot 292
Default Method Fundamentals — i 293

A More Practical Example of a Default Method , 295
Multiple Inheritance ISSUESoiuiiiiii e 296

Use static Methods in an Interface ... 297
Final Thoughts on Packages and Interfaces ...t 298
Chapter 8 Self Test ..ttt e 298
9 Exception Handlingcccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiineennes 299
The Exception Hierarchy o i e 301
Exception Handling Fundamentals —......... ..., 301
Using try and catCh ... oo 302

A Simple Exception Example ... i 302

The Consequences of an Uncaught Exception ocoiiiiiiiiiiiiinnan... 304
Exceptions Enable You to Handle Errors Gracefully 306
Using Multiple catch Statements ..ot 307
Catching Subclass EXCEPLONS ...ttt e 308
Try Blocks Can Be Nested ...t 309
Throwing an EXCEPtONo.i ittt et 310
Rethrowing an EXCeption ..ottt e 311

A Closer Look at Throwable i e 312
Using finally ..o e 314
USING tNIOWS ottt e et e et e e e et e 316
Three Recently Added Exception Features —c.ooiiiiiiiiiiiiiniiinnan... 317
Java’s Built-in EXCEPLIONSo ittt e e 319
Creating Exception SUbCIasses iuiiiinii e 321
Try This 9-1: Adding Exceptions to the Queue Classc.coviiiniiiinenn... 323

Chapter 9 Self Test .ottt e 327

Confents
10 USING I/O ittt ittt ittt it it tiie it tietastanescsncennnns 329
Java’s I/O Is Built upon Streams —o.ooniiiin i 331
Byte Streams and Character Streams —ooiiuiiiiiiiii i 331
The Byte Stream ClasSes ...ttt e e 331
The Character Stream CIasses c.uiiuiittii e 332
The Predefined Streams ..ot 333
Using the Byte Streams —ooiu i 334
Reading Console Input ... 334
Writing Console OUIPUL ..ot e 336
Reading and Writing Files Using Byte Streams 337
Inputting from a File 337
Writing to a File ... o 341
Automatically Closing a File ... 343
Reading and Writing Binary Data i 346
Try This 10-1: A File Comparison Utility —cooiiiiiiiiiiiiiii i 349
Random-Access FIles i 350
Using Java’s Character-Based Streams —oiiiiiiiiiiiiii i 353
Console Input Using Character Streams —c.eeneunernenninnenaenaen.s 353
Console Output Using Character Streams —ooiiiiiiniiinennenaen.. 357
File I/O Using Character Streams —oeueuneunerneneie e eaeaenaennns 358
Using a FIleWriter ... oo 358
Using a FileReader 359
Using Java’s Type Wrappers
to Convert NUMEriC StrNES . ..enttt ettt et 361
Try This 10-2: Creating a Disk-Based Help System coooiiin... 363
Chapter 10 Self Test ... e 370
11 Multithreaded Programmingcccciiiiiiiiiiiiiiiiiiiieeieencennnns 371
Multithreading Fundamentals — i 372
The Thread Class and Runnable Interface 373
Creating a Thread i e e 374
Some Simple Improvements ... 377
Try This 11-1: Extending Thread — i 379
Creating Multiple Threads e 381
Determining When a Thread Ends i 384
Thread Priorities ... e 387
Synchronization ... e 390
Using Synchronized Methods i 390
The synchronized Statement i 393
Thread Communication Using notify(), wait(), and notifyAll() 396
An Example That Uses wait() and notify() ... 397
Suspending, Resuming, and Stopping Threads — 402
Try This 11-2: Using the Main Thread —.......... i 406

Chapter 11 Self Test ... i e 408

xiii

Xiv

Java: A Beginner’s Guide

12

13

Enumerations, Autoboxing, Static Import, and Annotations

ENUMErationsoni ettt e e e e

Enumeration Fundamentals
Java Enumerations Are Class TYPeS ooiiniiiii i
The values() and valueOf() Methods i
Constructors, Methods, Instance Variables, and Enumerations

Two Important ReStrictions —ouiuiie it
Enumerations Inherit Enum
Try This 12-1: A Computer-Controlled Traffic Light
N D170 0704 1 ¥
TYPE WIADPETS ittt ettt et et
Autoboxing Fundamentals
Autoboxing and Methods ... o i
Autoboxing/Unboxing Occurs in EXpressions —c.ooiiiiiiiiiiiiiiieaen...

A Word of Warning ...
Static IMpPoOrt ..o
Annotations (Metadata) —
Chapter 12 Self Test ..o e e

0 1 1 i [

Generics Fundamentals
A Simple Generics Example
Generics Work Only with Reference Types ...t
Generic Types Differ Based on Their Type Arguments
A Generic Class with Two Type Parameters c..ciiiiiiiiiin..
The General Form of a Generic Class ot
Bounded TYPes ..ot
Using Wildcard Arguments —o.iiuiinimi e
Bounded Wildcards ... i
Generic Methodso
Generic CONSIUCIOTS ..ttt ettt ettt e e e e e e e e
Generic Interfaceso
Try This 13-1: Create a Generic QUEUEoiiiiiiiiiiiiii e
Raw Types and Legacy Codeo
Type Inference with the Diamond Operator — iiiiiiiiiiiiiaen...
BraSUIE o
Ambiguity Errors
Some Generic Restrictions oiuii i e
Type Parameters Can’t Be Instantiated it
Restrictions on Static Members i
Generic Array Restrictions ...t
Generic Exception Restriction i
Continuing Your Study of GEnerics —oooiiiiiiiiiiiiii i
Chapter 13 Self Test ... i e

14

15

Contents

Lambda Expressions and Method Referencescccocvvveieiiinnnnn

Introducing Lambda EXpressions —ooiiiii i
Lambda Expression Fundamentals —c. i
Functional Interfacesoioiiiii
Lambda Expressions in ACHION ouuiuiie ittt

Block Lambda EXPressionseeeteinetnet e

Generic Functional Interfaces — i

Try This 14-1: Pass a Lambda Expression as an Argument —c..c.oon...

Lambda Expressions and Variable Capture —c..coiiiiiiiiiiiiiiiiiiaen...

Throw an Exception from Within a Lambda Expression

Method References ooioiiii
Method References to static Methods ...
Method References to Instance Methods ...t

Constructor References ...t

Predefined Functional Interfaces — i

Chapter 14 Self Test ..o e

Applets, Events, and Miscellaneous Topics cccvvevevenenenenennannens

APPIEt BaSICS oo
Applet Organization and Essential Elements
The Applet ATChiteCture ioiini it e
A Complete Applet SKeleton ...t
Applet Initialization and Termination —ottt
Requesting Repainting ... o
The update() Method ... e
Try This 15-1: A Simple Banner Applet i
Using the Status Window ...
Passing Parameters to Applets ... i
The Applet Class ... e e e
Event Handlingo i
The Delegation Event Model
BV OntS o
EVENt SOUICES ..ottt e
Event LiSteners ooiiniii i
Event CIasses . ..c..ouinitt et e e e e
Event Listener Interfaces i
Using the Delegation Event Model — i
Handling Mouse and Mouse Motion Events ...t
A Simple Mouse Event Applet ...
More Java Keywords —ooi
The transient and volatile Modifierso i
INSTANCEOT L. e
] 0

XV

Xvi

Java: A Beginner’s Guide

16

17

T 536
Native Methods 537
Chapter 15 Self Test ..ot e e 538
Introducing SWINZ ..cvuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiieriieeaiiennees 541
The Origins and Design Philosophy of Swing o i 543
Components and CONTAINETS ..o ..ttt ettt et et e et e e e e 545
(7035110707 81S) 1 6] 545
(0] 112 11 £ 546
The Top-Level Container Panes —ooiiiiiiiiiiiiiii i, 546
Layout Managers c..ouenint et e 547
A First Simple Swing Program 547
The First Swing Example Line by Line c..co i, 549
USe JBULON oottt e 553
Work with JTextField 557
Create a JCheckBOX ... oo 560
Work With JLISt oo 564
Try This 16-1: A Swing-Based File Comparison Utility =c.ccoiiiiia... 568
Use Anonymous Inner Classes or Lambda Expressions to Handle Events 573
Create a SWING Applet ..ot 575
Chapter 16 Self Test . .o.ini it e 577
Introducing JavaFXociiiiiiiiiiiiiiiiiiiiiiiiiieccesscncasssscasasasas 579
JavaFX Basic CONCEPLS ...ttt ettt ettt et et et 581
The JavaFX Packageso i 581
The Stage and Scene Classes c..veiuiiiiiiiiin i, 581
Nodes and Scene Graphs —ooiiiiitii i 582
Layouts .. 582
The Application Class and the Life-cycle Methods —coooiiet. 582
Launching a JavaFX Application ciiiiiiiiiiiniii i, 583
A JavaFX Application Skeleton — i 583
Compiling and Running a JavaFX Program — o i, 586
The Application Threadoooiiiiii e 587
A Simple JavaFX Control: Label i 587
Using Buttons and EVents oouiiiiiiii i 589
EVvent Basics ...t 590
Introducing the Button Control i 590
Demonstrating Event Handling and the Button ..., 591
Three More JavaFX Controls o 594
CheCkBoOX ot e 594
Try This 17-1: Use the CheckBox Indeterminate State cooveeiin... 598
LStV W o 599

TeXtEIld oo 604

Confents
Introducing Effects and Transforms i 607
B eCtS o 607
Transforms ... 609
Demonstrating Effects and Transforms — o it 610
What NeXt? oo 613
Chapter 17 Self Test oo e 614
Answers to Self Tests ..ocuvvuieiiiiiiiiiiiiiiiiiieriieiieiieierieencenens 615
Chapter 1: Java Fundamentals — i 616
Chapter 2: Introducing Data Types and Operators —coeeieeneinennennen... 618
Chapter 3: Program Control Statements —, 619
Chapter 4: Introducing Classes, Objects, and Methods —.......................coo.... 622
Chapter 5: More Data Types and Operators —oeeeiueineineineinennenaenn.. 623
Chapter 6: A Closer Look at Methods and Classes —cooiiiiiiiiniennen... 627
Chapter 7: INheritance oiuiin it e 632
Chapter 8: Packages and Interfaces —...............iiiiiiiiiiiiii i 634
Chapter 9: Exception Handlingo i 636
Chapter 10: Using /O ... oo e 639
Chapter 11: Multithreaded Programming —t 642
Chapter 12: Enumerations, Autoboxing, Static Import, and Annotations — 644
Chapter 13: GeNeIICS ...ttt ettt e e e et 648
Chapter 14: Lambda Expressions and Method References — 653
Chapter 15: Applets, Events, and Miscellaneous Topics —ccoiiiiinion... 656
Chapter 16: Introducing SWING ..ottt 661
Chapter 17: Introducing JavaFX 667
Using Java’s Documentation Commentsccccoieiiiiiiieeieennnn. 673
The Javadoc Tags . .et et e 674
@author ... 675
{@cCode) o 675
@Aeprecated e 675
{@AOCROOL} o e 675
@EXCOPLION ettt et ettt e e e e e e e e e 675
{@INheritDOC} oo e 676
[@UNK} o 676
{@Unkplain} ... 676
{@LUteral] ..o 676
@PATAINL .ttt e e e e e e e 676
@TELUINL oottt e e et 676
@8BE i 677
@serial .o 677
@serialData ... 677

@serialField ... 677

xvii

xviii Java: A Beginner's Guide

@ I oottt ettt e e e e 677
DT OWS ottt e e e 678
(@VaAlUE) o 678
@ VETSION ottt ittt et e e e e e e e 678
The General Form of a Documentation Comment —cooiiiiirinanin.... 678
What Javadoc OULPULS .. oe ittt ettt ettt 679
An Example That Uses Documentation Comments —coeviiineneneenenen... 679

Introduction

The purpose of this book is to teach you the fundamentals of Java programming. It uses

a step-by-step approach complete with numerous examples, self tests, and projects. It
assumes no previous programming experience. The book starts with the basics, such as how
to compile and run a Java program. It then discusses the keywords, features, and constructs
that form the core of the Java language. You’ll also find coverage of some of Java’s most
advanced features, including multithreaded programming and generics. An introduction to the
fundamentals of Swing and JavaFX concludes the book. By the time you finish, you will have
a firm grasp of the essentials of Java programming.

It is important to state at the outset that this book is just a starting point. Java is more than
just the elements that define the language. Java also includes extensive libraries and tools that
aid in the development of programs. To be a top-notch Java programmer implies mastery of
these areas, too. After completing this book, you will have the knowledge to pursue any and all
other aspects of Java.

The Evolution of Java

Only a few languages have fundamentally reshaped the very essence of programming. In this
elite group, one stands out because its impact was both rapid and widespread. This language
is, of course, Java. It is not an overstatement to say that the original release of Java 1.0 in 1995
by Sun Microsystems, Inc., caused a revolution in programming. This revolution radically
transformed the Web into a highly interactive environment. In the process, Java set a new
standard in computer language design.

Xix

XX

Java: A Beginner’s Guide

Over the years, Java has continued to grow, evolve, and otherwise redefine itself. Unlike
many other languages, which are slow to incorporate new features, Java has often been at the
forefront of computer language development. One reason for this is the culture of innovation
and change that came to surround Java. As a result, Java has gone through several upgrades—
some relatively small, others more significant.

The first major update to Java was version 1.1. The features added by Java 1.1 were
more substantial than the increase in the minor revision number would have you think. For
example, Java 1.1 added many new library elements, redefined the way events are handled, and
reconfigured many features of the original 1.0 library.

The next major release of Java was Java 2, where the 2 indicates “second generation.” The
creation of Java 2 was a watershed event, marking the beginning of Java’s “modern age.” The
first release of Java 2 carried the version number 1.2. It may seem odd that the first release
of Java 2 used the 1.2 version number. The reason is that it originally referred to the internal
version number of the Java libraries but then was generalized to refer to the entire release,
itself. With Java 2, Sun repackaged the Java product as J2SE (Java 2 Platform Standard
Edition), and the version numbers began to be applied to that product.

The next upgrade of Java was J2SE 1.3. This version of Java was the first major upgrade to
the original Java 2 release. For the most part, it added to existing functionality and “tightened
up” the development environment. The release of J2SE 1.4 further enhanced Java. This release
contained several important new features, including chained exceptions, channel-based 1/0,
and the assert keyword.

The release of J2SE 5 created nothing short of a second Java revolution. Unlike most of
the previous Java upgrades, which offered important but incremental improvements, J2SE 5
fundamentally expanded the scope, power, and range of the language. To give you an idea of
the magnitude of the changes caused by J2SE 5, here is a list of its major new features:

Generics

Autoboxing/unboxing

Enumerations

The enhanced “for-each” style for loop
Variable-length arguments (varargs)
Static import

Annotations

This is not a list of minor tweaks or incremental upgrades. Each item in the list represents a
significant addition to the Java language. Some, such as generics, the enhanced for loop, and
varargs, introduced new syntax elements. Others, such as autoboxing and auto-unboxing,
altered the semantics of the language. Annotations added an entirely new dimension to
programming.

Intfroduction

The importance of these new features is reflected in the use of the version number “5.”
The next version number for Java would normally have been 1.5. However, the new features
were so significant that a shift from 1.4 to 1.5 just didn’t seem to express the magnitude of the
change. Instead, Sun elected to increase the version number to 5 as a way of emphasizing that
a major event was taking place. Thus, it was named J2SE 5, and the Java Development Kit
(JDK) was called JDK 5. In order to maintain consistency, however, Sun decided to use 1.5 as
its internal version number, which is also referred to as the developer version number. The “5”
in J2SE 5 is called the product version number.

The next release of Java was called Java SE 6, and Sun once again decided to change the
name of the Java platform. First, notice that the “2” has been dropped. Thus, the platform now
had the name Java SE, and the official product name was Java Platform, Standard Edition 6,
with the development kit being called JDK 6. As with J2SE 5, the 6 in Java SE 6 is the product
version number. The internal, developer version number is 1.6.

Java SE 6 built on the base of J2SE 5, adding incremental improvements. Java SE 6 added
no major features to the Java language proper, but it did enhance the API libraries, added several
new packages, and offered improvements to the run time. It also went through several updates
during its long (in Java terms) life cycle, with several upgrades added along the way. In general,
Java SE 6 served to further solidify the advances made by J2SE 5.

The next release of Java was called Java SE 7, with the development kit being called JDK 7.

It has an internal version number of 1.7. Java SE 7 was the first major release of Java after Sun
Microsystems was acquired by Oracle. Java SE 7 added several new features, including significant
additions to the language and the API libraries. Some of the most important features added by Java
SE 7 were those developed as part of Project Coin. The purpose of Project Coin was to identify a
number of small changes to the Java language that would be incorporated into JDK 7, including

A String can control a switch statement.
Binary integer literals.
Underscores in numeric literals.

An expanded try statement, called try-with-resources, that supports automatic resource
management.

Type inference (via the diamond operator) when constructing a generic instance.

Enhanced exception handling in which two or more exceptions can be caught by a single
catch (multicatch) and better type checking for exceptions that are rethrown.

As you can see, even though the Project Coin features were considered to be small changes
to the language, their benefits were much larger than the qualifier “small” would suggest.
In particular, the try-with-resources statement profoundly affects the way that a substantial
amount of code is written.

xxii Java: A Beginner's Guide

Java SE 8

The newest release of Java is Java SE 8, with the development kit being called JDK 8. It

has an internal version number of 1.8. JDK 8 represents a very significant upgrade to the

Java language because of the inclusion of a far-reaching new language feature: the lambda
expression. The impact of lambda expressions will be profound, changing both the way that
programming solutions are conceptualized and how Java code is written. In the process,
lambda expressions can simplify and reduce the amount of source code needed to create
certain constructs. The addition of lambda expressions also causes a new operator (the —>) and
a new syntax element to be added to the language. Lambda expressions help ensure that Java
will remain the vibrant, nimble language that users have come to expect.

In addition to lambda expressions, JDK 8 adds many other important new features. For
example, beginning with JDK 8, it is now possible to define a default implementation for a
method specified by an interface. JDK 8 also bundles support for JavaFX, Java’s new GUI
framework. JavaFX is expected to soon play an important part in nearly all Java applications,
ultimately replacing Swing for most GUI-based projects. In the final analysis, Java SE 8 is a
major release that profoundly expands the capabilities of the language and changes the way
that Java code is written. Its effects will be felt throughout the Java universe and for years to
come. The material in this book has been updated to reflect Java SE 8, with many new features,
updates, and additions indicated throughout.

How This Book Is Organized

This book presents an evenly paced tutorial in which each section builds upon the previous
one. It contains 17 chapters, each discussing an aspect of Java. This book is unique because it
includes several special elements that reinforce what you are learning.

Key Skills & Concepts

Each chapter begins with a set of critical skills that you will be learning.

Self Test

Each chapter concludes with a Self Test that lets you test your knowledge. The answers are in
Appendix A.

Ask the Expert

Sprinkled throughout the book are special “Ask the Expert” boxes. These contain additional
information or interesting commentary about a topic. They use a Question/Answer format.

Try This Elements

Each chapter contains one or more Try This elements, which are projects that show you how to
apply what you are learning. In many cases, these are real-world examples that you can use as
starting points for your own programs.

Introduction XXl

No Previous Programming Experience Required

This book assumes no previous programming experience. Thus, if you have never programmed
before, you can use this book. If you do have some previous programming experience, you will
be able to advance a bit more quickly. Keep in mind, however, that Java differs in several key
ways from other popular computer languages. It is important not to jump to conclusions. Thus,
even for the experienced programmer, a careful reading is advised.

Required Software

To compile and run all of the programs in this book, you will need the latest Java Development
Kit (JDK) from Oracle, which, at the time of this writing, is JDK 8. This is the JDK for Java
SE 8. Instructions for obtaining the Java JDK are given in Chapter 1.

If you are using an earlier version of Java, you will still be able to use this book, but you
won’t be able to compile and run the programs that use Java’s newer features.

Don’t Forget: Code on the Web

Remember, the source code for all of the examples and projects in this book is available free of
charge on the Web at www.oraclepressbooks.com.

Special Thanks
Special thanks to Danny Coward, the technical editor for this edition of the book. Danny has
worked on several of my books and his advice, insights, and suggestions have always been of
great value and much appreciated.

http://www.oraclepressbooks.com

XXiV Java: A Beginner's Guide

For Further Study

Java: A Beginner’s Guide is your gateway to the Herb Schildt series of Java programming
books. Here are some others that you will find of interest:

Java: The Complete Reference

Herb Schildt’s Java Programming Cookbook
The Art of Java

Swing: A Beginner’s Guide

Chapter 1

Java Fundamentals

2

Java: A Beginner's Guide

Key Skills & Concepts

Know the history and philosophy of Java

Understand Java’s contribution to the Internet

Understand the importance of bytecode

Know the Java buzzwords

Understand the foundational principles of object-oriented programming
Create, compile, and run a simple Java program

Use variables

Use the if and for control statements

Create blocks of code

Understand how statements are positioned, indented, and terminated
Know the Java keywords

Understand the rules for Java identifiers

The rise of the Internet and the World Wide Web fundamentally reshaped computing. Prior

to the Web, the cyber landscape was dominated by stand-alone PCs. Today, nearly all
computers are connected to the Internet. The Internet, itself, was transformed—originally
offering a convenient way to share files and information. Today it is a vast, distributed
computing universe. With these changes came a new way to program: Java.

Java is the preeminent language of the Internet, but it is more than that. Java revolutionized
programming, changing the way that we think about both the form and the function of a
program. To be a professional programmer today implies the ability to program in Java—it is
that important. In the course of this book, you will learn the skills needed to master it.

The purpose of this chapter is to introduce you to Java, including its history, its design
philosophy, and several of its most important features. By far, the hardest thing about learning
a programming language is the fact that no element exists in isolation. Instead, the components
of the language work in conjunction with each other. This interrelatedness is especially
pronounced in Java. In fact, it is difficult to discuss one aspect of Java without involving
others. To help overcome this problem, this chapter provides a brief overview of several Java
features, including the general form of a Java program, some basic control structures, and
operators. It does not go into too many details but, rather, concentrates on the general concepts
common to any Java program.

Chapter 1: Java Fundamentals 3

The Origins of Java

Computer language innovation is driven forward by two factors: improvements in the art of
programming and changes in the computing environment. Java is no exception. Building upon
the rich legacy inherited from C and C++, Java adds refinements and features that reflect the
current state of the art in programming. Responding to the rise of the online environment, Java
offers features that streamline programming for a highly distributed architecture.

Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and
Mike Sheridan at Sun Microsystems in 1991. This language was initially called “Oak” but
was renamed “Java” in 1995. Somewhat surprisingly, the original impetus for Java was not the
Internet! Instead, the primary motivation was the need for a platform-independent language that
could be used to create software to be embedded in various consumer electronic devices, such as
toasters, microwave ovens, and remote controls. As you can probably guess, many different types
of CPUs are used as controllers. The trouble was that (at that time) most computer languages
were designed to be compiled for a specific target. For example, consider C++.

Although it was possible to compile a C++ program for just about any type of CPU, to do
so required a full C++ compiler targeted for that CPU. The problem, however, is that compilers
are expensive and time-consuming to create. In an attempt to find a better solution, Gosling and
others worked on a portable, cross-platform language that could produce code that would
run on a variety of CPUs under differing environments. This effort ultimately led to the creation
of Java.

About the time that the details of Java were being worked out, a second, and ultimately
more important, factor emerged that would play a crucial role in the future of Java. This
second force was, of course, the World Wide Web. Had the Web not taken shape at about the
same time that Java was being implemented, Java might have remained a useful but obscure
language for programming consumer electronics. However, with the emergence of the Web,
Java was propelled to the forefront of computer language design, because the Web, too,
demanded portable programs.

Most programmers learn early in their careers that portable programs are as elusive as they
are desirable. While the quest for a way to create efficient, portable (platform-independent)
programs is nearly as old as the discipline of programming itself, it had taken a back seat to
other, more pressing problems. However, with the advent of the Internet and the Web, the old
problem of portability returned with a vengeance. After all, the Internet consists of a diverse,
distributed universe populated with many types of computers, operating systems, and CPUs.

What was once an irritating but a low-priority problem had become a high-profile
necessity. By 1993, it became obvious to members of the Java design team that the problems of
portability frequently encountered when creating code for embedded controllers are also found
when attempting to create code for the Internet. This realization caused the focus of Java to
switch from consumer electronics to Internet programming. So, while it was the desire for an
architecture-neutral programming language that provided the initial spark, it was the Internet
that ultimately led to Java’s large-scale success.

4

Java: A Beginner's Guide

How Java Relates to C and C++

Java is directly related to both C and C++. Java inherits its syntax from C. Its object model

is adapted from C++. Java’s relationship with C and C++ is important for several reasons.
First, many programmers are familiar with the C/C++ syntax. This makes it easy for a C/C++
programmer to learn Java and, conversely, for a Java programmer to learn C/C++.

Second, Java’s designers did not “reinvent the wheel.” Instead, they further refined an
already highly successful programming paradigm. The modern age of programming began
with C. It moved to C++, and now to Java. By inheriting and building upon that rich heritage,
Java provides a powerful, logically consistent programming environment that takes the best of
the past and adds new features required by the online environment. Perhaps most important,
because of their similarities, C, C++, and Java define a common, conceptual framework for
the professional programmer. Programmers do not face major rifts when switching from one
language to another.

One of the central design philosophies of both C and C++ is that the programmer is in
charge! Java also inherits this philosophy. Except for those constraints imposed by the Internet
environment, Java gives you, the programmer, full control. If you program well, your programs
reflect it. If you program poorly, your programs reflect that, too. Put differently, Java is not
a language with training wheels. It is a language for professional programmers.

Java has one other attribute in common with C and C++: it was designed, tested, and refined by
real, working programmers. It is a language grounded in the needs and experiences of the people
who devised it. There is no better way to produce a top-flight professional programming language.

Because of the similarities between Java and C++, especially their support for object-
oriented programming, it is tempting to think of Java as simply the “Internet version of
C++.” However, to do so would be a mistake. Java has significant practical and philosophical
differences. Although Java was influenced by C++, it is not an enhanced version of C++.

For example, it is neither upwardly nor downwardly compatible with C++. Of course, the
similarities with C++ are significant, and if you are a C++ programmer, you will feel right at
home with Java. Another point: Java was not designed to replace C++. Java was designed to
solve a certain set of problems. C++ was designed to solve a different set of problems. They
will coexist for many years to come.

How Java Relates to C#
A few years after the creation of Java, Microsoft developed the C# language. This is important
because C# is closely related to Java. In fact, many of C#’s features directly parallel Java. Both
Java and C# share the same general C++-style syntax, support distributed programming,
and utilize the same object model. There are, of course, differences between Java and C#, but
the overall “look and feel” of these languages is very similar. This means that if you already
know C#, then learning Java will be especially easy. Conversely, if C# is in your future, then
your knowledge of Java will come in handy.

Given the similarity between Java and C#, one might naturally ask, “Will C# replace Java?”
The answer is No. Java and C# are optimized for two different types of computing environments.
Just as C++ and Java will coexist for a long time to come, so will C# and Java.

Chapter 1: Java Fundamentals 9

Java’s Contribution to the Internet

The Internet helped catapult Java to the forefront of programming, and Java, in turn, had a
profound effect on the Internet. In addition to simplifying web programming in general, Java
innovated a new type of networked program called the applet that changed the way the online
world thought about content. Java also addressed some of the thorniest issues associated with
the Internet: portability and security. Let’s look more closely at each of these.

Java Applets

An applet is a special kind of Java program that is designed to be transmitted over the Internet
and automatically executed by a Java-compatible web browser. Furthermore, an applet is
downloaded on demand, without further interaction with the user. If the user clicks a link

that contains an applet, the applet will be automatically downloaded and run in the browser.
Applets are intended to be small programs. They are typically used to display data provided
by the server, handle user input, or provide simple functions, such as a loan calculator, that
execute locally, rather than on the server. In essence, the applet allows some functionality to be
moved from the server to the client.

The creation of the applet changed Internet programming because it expanded the universe
of objects that can move about freely in cyberspace. In general, there are two very broad
categories of objects that are transmitted between the server and the client: passive information
and dynamic, active programs. For example, when you read your e-mail, you are viewing
passive data. Even when you download a program, the program’s code is still only passive
data until you execute it. By contrast, the applet is a dynamic, self-executing program. Such a
program is an active agent on the client computer, yet it is initiated by the server.

As desirable as dynamic, networked programs are, they also present serious problems
in the areas of security and portability. Obviously, a program that downloads and executes
automatically on the client computer must be prevented from doing harm. It must also be able to
run in a variety of different environments and under different operating systems. As you will see,
Java solved these problems in an effective and elegant way. Let’s look a bit more closely at each.

Security

As you are likely aware, every time that you download a “normal” program, you are taking
arisk because the code you are downloading might contain a virus, Trojan horse, or other
harmful code. At the core of the problem is the fact that malicious code can cause its damage
because it has gained unauthorized access to system resources. For example, a virus program
might gather private information, such as credit card numbers, bank account balances, and
passwords, by searching the contents of your computer’s local file system. In order for Java to
enable applets to be safely downloaded and executed on the client computer, it was necessary
to prevent an applet from launching such an attack.

Java achieved this protection by confining an applet to the Java execution environment
and not allowing it access to other parts of the computer. (You will see how this is accomplished
shortly.) The ability to download applets with confidence that no harm will be done and that no
security will be breached is considered by many to be the single most innovative aspect of Java.

6

Java: A Beginner's Guide

Portability

Portability is a major aspect of the Internet because there are many different types of
computers and operating systems connected to it. If a Java program were to be run on virtually
any computer connected to the Internet, there needed to be some way to enable that program
to execute on different systems. For example, in the case of an applet, the same applet must be
able to be downloaded and executed by the wide variety of different CPUs, operating systems,
and browsers connected to the Internet. It is not practical to have different versions of the
applet for different computers. The same code must work in all computers. Therefore, some
means of generating portable executable code was needed. As you will soon see, the same
mechanism that helps ensure security also helps create portability.

Java’s Magic: The Bytecode

The key that allows Java to solve both the security and the portability problems just described
is that the output of a Java compiler is not executable code. Rather, it is bytecode. Bytecode

is a highly optimized set of instructions designed to be executed by the Java run-time system,
which is called the Java Virtual Machine (JVM). In essence, the original JVM was designed
as an interpreter for bytecode. This may come as a bit of a surprise because many modern
languages are designed to be compiled into executable code due to performance concerns.
However, the fact that a Java program is executed by the JVM helps solve the major problems
associated with web-based programs. Here is why.

Translating a Java program into bytecode makes it much easier to run a program in
a wide variety of environments because only the JVM needs to be implemented for each
platform. Once the run-time package exists for a given system, any Java program can run
on it. Remember, although the details of the JVM will differ from platform to platform, all
understand the same Java bytecode. If a Java program were compiled to native code, then
different versions of the same program would have to exist for each type of CPU connected to
the Internet. This is, of course, not a feasible solution. Thus, the execution of bytecode by the
JVM is the easiest way to create truly portable programs.

The fact that a Java program is executed by the JVM also helps to make it secure. Because the
JVM is in control, it can contain the program and prevent it from generating side effects outside of
the system. Safety is also enhanced by certain restrictions that exist in the Java language.

When a program is interpreted, it generally runs slower than the same program would run
if compiled to executable code. However, with Java, the differential between the two is not so
great. Because bytecode has been highly optimized, the use of bytecode enables the JVM to
execute programs much faster than you might expect.

Although Java was designed as an interpreted language, there is nothing about Java that
prevents on-the-fly compilation of bytecode into native code in order to boost performance. For
this reason, the HotSpot technology was introduced not long after Java’s initial release. HotSpot
provides a just-in-time (JIT) compiler for bytecode. When a JIT compiler is part of the JVM,
selected portions of bytecode are compiled into executable code in real time on a piece-by-piece,
demand basis. It is important to understand that it is not practical to compile an entire Java
program into executable code all at once because Java performs various run-time checks that can
be done only at run time. Instead, a JIT compiler compiles code as it is needed, during execution.
Furthermore, not all sequences of bytecode are compiled—only those that will benefit from

Chapter 1:

Java Fundamentals

Ask the Expert

Q: 1 have heard about a special type of Java program called a servlet. What is it?

A: A serviet is a small program that executes on a server. Just as applets dynamically extend
the functionality of a web browser, servlets dynamically extend the functionality of a web
server. It is helpful to understand that as useful as applets can be, they are just one half of the
client/server equation. Not long after the initial release of Java, it became obvious that Java
would also be useful on the server side. The result was the servlet. Thus, with the advent of
the servlet, Java spanned both sides of the client/server connection. Although the creation of
servlets is beyond the scope of this beginner’s guide, they are something that you will want to
study further as you advance in Java programming. (Coverage of servlets can be found in my
book Java: The Complete Reference, published by Oracle Press/McGraw-Hill Education.)

compilation. The remaining code is simply interpreted. However, the just-in-time approach
still yields a significant performance boost. Even when dynamic compilation is applied to
bytecode, the portability and safety features still apply because the JVM is still in charge of
the execution environment.

The Java Buzzwords

No overview of Java is complete without a look at the Java buzzwords. Although the fundamental
forces that necessitated the invention of Java are portability and security, other factors played an
important role in molding the final form of the language. The key considerations were summed up
by the Java design team in the following list of buzzwords.

Simple Java has a concise, cohesive set of features that makes it easy to learn and use.

Secure Java provides a secure means of creating Internet applications.

Portable Java'programs can execute in any environment for which there is a Java
run-time system.

Object-oriented Java embodies the modern, object-oriented programming philosophy.

Robust Java encourages error-free programming by being strictly typed and
performing run-time checks.

Multithreaded Java provides integrated support for multithreaded programming.

Architecture-neutral Java is not tied to a specific machine or operating system architecture.

Inferprei'ed Java supports cross-platform code through the use of Java bytecode.

High performance The Java bytecode is highly optimized for speed of execution.

Distributed Java was designed with the distributed environment of the Internet in mind.

Dynamic

Java programs carry with them substantial amounts of run-time type
information that is used to verify and resolve accesses to objects at run time.

8

Java: A Beginner's Guide

Ask the Expert

Q: To address the issues of portability and security, why was it necessary to create a new

computer language such as Java; couldn’t a language like C++ be adapted? In other
words, couldn’t a C++ compiler that outputs bytecode be created?

While it would be possible for a C++ compiler to generate something similar to bytecode
rather than executable code, C++ has features that discourage its use for the creation of
Internet programs—the most important feature being C++’s support for pointers. A pointer
is the address of some object stored in memory. Using a pointer, it would be possible to
access resources outside the program itself, resulting in a security breach. Java does not
support pointers, thus eliminating this problem.

Object-Oriented Programming

At the center of Java is object-oriented programming (OOP). The object-oriented methodology
is inseparable from Java, and all Java programs are, to at least some extent, object-oriented.
Because of OOP’s importance to Java, it is useful to understand in a general way OOP’s basic
principles before you write even a simple Java program. Later in this book, you will see how to
put these concepts into practice.

OOP is a powerful way to approach the job of programming. Programming methodologies
have changed dramatically since the invention of the computer, primarily to accommodate
the increasing complexity of programs. For example, when computers were first invented,
programming was done by toggling in the binary machine instructions using the computer’s
front panel. As long as programs were just a few hundred instructions long, this approach
worked. As programs grew, assembly language was invented so that a programmer could deal
with larger, increasingly complex programs, using symbolic representations of the machine
instructions. As programs continued to grow, high-level languages were introduced that gave
the programmer more tools with which to handle complexity. The first widespread language
was, of course, FORTRAN. Although FORTRAN was a very impressive first step, it is hardly
a language that encourages clear, easy-to-understand programs.

The 1960s gave birth to structured programming. This is the method encouraged by
languages such as C and Pascal. The use of structured languages made it possible to write
moderately complex programs fairly easily. Structured languages are characterized by their
support for stand-alone subroutines, local variables, rich control constructs, and their lack of
reliance upon the GOTO. Although structured languages are a powerful tool, even they reach
their limit when a project becomes too large.

Consider this: At each milestone in the development of programming, techniques and
tools were created to allow the programmer to deal with increasingly greater complexity. Each
step of the way, the new approach took the best elements of the previous methods and moved
forward. Prior to the invention of OOP, many projects were nearing (or exceeding) the point

Chapter 1: Java Fundamentals

where the structured approach no longer works. Object-oriented methods were created to help
programmers break through these barriers.

Object-oriented programming took the best ideas of structured programming and combined
them with several new concepts. The result was a different way of organizing a program. In
the most general sense, a program can be organized in one of two ways: around its code (what
is happening) or around its data (what is being affected). Using only structured programming
techniques, programs are typically organized around code. This approach can be thought of as
“code acting on data.”

Object-oriented programs work the other way around. They are organized around data,
with the key principle being “data controlling access to code.” In an object-oriented language,
you define the data and the routines that are permitted to act on that data. Thus, a data type
defines precisely what sort of operations can be applied to that data.

To support the principles of object-oriented programming, all OOP languages, including
Java, have three traits in common: encapsulation, polymorphism, and inheritance. Let’s
examine each.

Encapsulation

Encapsulation is a programming mechanism that binds together code and the data it manipulates,
and that keeps both safe from outside interference and misuse. In an object-oriented language,
code and data can be bound together in such a way that a self-contained black box is created.
Within the box are all necessary data and code. When code and data are linked together in this
fashion, an object is created. In other words, an object is the device that supports encapsulation.

Within an object, code, data, or both may be private to that object or public. Private code
or data is known to and accessible by only another part of the object. That is, private code or
data cannot be accessed by a piece of the program that exists outside the object. When code
or data is public, other parts of your program can access it even though it is defined within an
object. Typically, the public parts of an object are used to provide a controlled interface to the
private elements of the object.

Java’s basic unit of encapsulation is the class. Although the class will be examined in great
detail later in this book, the following brief discussion will be helpful now. A class defines the
form of an object. It specifies both the data and the code that will operate on that data. Java
uses a class specification to construct objects. Objects are instances of a class. Thus, a class is
essentially a set of plans that specify how to build an object.

The code and data that constitute a class are called members of the class. Specifically, the
data defined by the class are referred to as member variables or instance variables. The code
that operates on that data is referred to as member methods or just methods. Method is Java’s
term for a subroutine. If you are familiar with C/C++, it may help to know that what a Java
programmer calls a method, a C/C++ programmer calls a function.

Polymorphism

Polymorphism (from Greek, meaning “many forms”) is the quality that allows one interface to
access a general class of actions. The specific action is determined by the exact nature of the
situation. A simple example of polymorphism is found in the steering wheel of an automobile.

9

